

Automotive Embedded SW Development

I. Job Title/Job Specialty:

- Automotive SW Engineer
- R&D Automotive SW Engineer

II. Prerequisite:

- Fresh graduate (maximum 5 years from graduation)
- B.Sc. in Electronics Engineering, Mechatronics Engineering, Communication Engineering, Computer Engineering, Computer Science.
- Good Problem-Solving Skills
- Basic Knowledge of Embedded Systems

III. Course Duration: 3 months

IV. Hours/week: 35 hours

V. Course Contents:

1	Introduction

- 1.1 What are Embedded Systems?
- 1.2 Embedded systems in our life
- 1.3 Embedded systems characteristics
- 1.4 Microcontroller Vs. Microprocessor
- 1.5 Memory types (RAM, ROM, EEPROM, ...etc.)
- 1.6 Embedded systems market in Egypt
- 1.7 Introduction into the Automotive Market

2 Embedded C

- 2.1 C Vs. Embedded C
- 2.2 Code Compilation process
- 2.3 Data Types
- 2.4 Pointers
- 2.5 Structure & Union & Bitfields
- 2.6 Enum
- 2.7 Typedef
- 2.8 Declaration vs. Definition and extern
- 2.9 Overflow vs. Underflow
- 2.10 Explicit casting Vs. Implicit casting
- 2.11 Data Type Qualifiers
- 2.12 Storage classes
- 2.13 Program memory segments
- 2.14 HW I/O concepts
- 3 Make file introduction
- 3.1 What is Make (GNU Make as an example)
- 3.2 makefile structure: Rule structure: Target, Dependencies, Commands
- 3.3 Make variables

3.4	Make implicit rules
3.5	Creating project hierarchy
3.6	Header files issue and Make dependencies
4	AVR and ARM HW Interfacing
4.1	AVR & ARM architectures
4.2	GPIO
4.3	Polling vs. Interrupt
4.4	Timer
4.5	PWM
4.6	Communication protocols
4.7	ADC
4.7 6	Data Structures & Algorithms
6 .1	Primitive DS
6.2	Non-Primitive DS
6.2 6.3	Algorithms
	0
7	Operating System
7.1	Introduction
7.2	OS concepts
7.3	RTOS
8	System Level Design
8.1	System components
8.2	Block Diagram and IO Specification
8.3	Flow chart
8.4	HW concepts
8.5	SW Programming concepts
9	Software Testing
9.1	What is testing?
9.2	Testing objectives
9.3	Testing life-cycle
9.4	Validation Vs. Verification
9.5	Testing Models
9.6	Testing Levels
9.7	Static Testing Vs. Dynamic Testing
9.8	Testing Types
9.9	Code review & Review process
9.10	Static analysis
10	Software Engineering & Practices
10.1	Software Engineering
10.2	Agile Methodology
10.3	Requirements Engineering
10.4	Project Management
10.5	Configuration Management
10.6	Defect Management
11	AUTOSAR
11.1	AUTOSAR Basics
11.2	AUTOSAR Software Components & Application Layer
11.3	AUTOSAR basic Software Layer
11.0	

11.4 AUTOSAR MCAL Layer

- 11.5 AUTOSAR Services Layer
- 11.6 Deployed AUTOSAR knowledge of Memory Stack Modules
- 11.7 Deployed AUTOSAR Knowledge of Communication Stack Modules
- 12 Functional Safety
- 12.1 Introduction to ISO26262
- 12.2 Concept phase
- 12.3 Product development Systems Level
- 12.4 Product development Software Level
- 12.5 Summary of Functional Safety Activities.
- 12.6 Introduction to Safety Analysis techniques (FTA, FFI, FMEDA, ... etc.).
- 12.7 Safety Mechanisms and how to read them from safety manual.
- 12.8 Applying Analysis and implementation to achieve technical safety requirements
- 13 Automotive Cybersecurity Fundamentals
- 13.1 Automotive Cybersecurity Overview
- 13.2 Crypto Attributes and Primitives
- 13.3 Cyber Security Concepts
- 13.4 Cybersecurity Analysis and Verification
- 13.5 Cybersecurity Concepts and Solutions
- 14 Non-Technical Skills
- 14.1 Communication Skills
- 14.3 Presentation Skills
- 14.4 Business Writing
- 14.5 Email Writing
- 14.6 Employee Key Performance Indicators